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Introduction
• Developing a hybrid climate model with AI surrogates emulating physical parameterizations requires a dataset that captures subgrid dynamics.

• Most physics-emulators require large and accurate training data, but existing Cloud-Resolving Simulations (CRMs) do not fully resolve convection,
observations from field campaigns do not measure all the relevant variables and Large-Eddy Simulations (LES) use only a limited domain.

• We propose and test a pretraining and fine-tuning strategy for combining the benefits of the different types of training data available to obtain
better physics emulator using the concept of transfer learning, where a neural network is trained sequentially on two different but closely related
datasets.

Datasets
• Four years of coarse-resolution climate data using the Community Atmosphere Model (CAM4)

within CESM as the GCM.

• Three years of finer resolution data using the superparameterized CAM (SPCAM) with 16
columns of SAM replacing CAM4’s conventional parameterization.

Neural Network Setup
• 7 fully connected (FC) layer blocks.

• Hidden dimension of each layer, H = 512.

• Weighted mse (optimization loss).

Pretraining, benchmarking and fine-tuning strategy

FIG1:A summary of experiments conducted with the surrogate.

Metrics
1. Truncated skill:
We compute the truncated skill analogously
(where σ2(·) is the variance averaged over the
same dimensions as the mse)

skill(y, ŷ) = max
[

0, 1 −
mse(y, ŷ)

σ2(y)

]
(1)

2. Disagreement skill:
We measure model disagreement on a specific
dataset. Given samples from a (x, y), and two
models ( one trained on a dataset a, fa and
another trained on another dataset b, f b ), we
compute disagreement skill by simply evaluating
both models on the same inputs and normalizing
by the variance of the matching output.

skillD(f
a(x), f

b(x), y) = max
[

0, 1 −
mse(fa(x), fb(x))

σ2(y)

]
(2)

Results

FIG2:Model transferability to another dataset evaluated on predicting the scalar output
precipitation variable. Performance of (a) CAM4 surrogate on CAM4 test data, (b) CAM4

surrogate on SPCAM data, (c) SPCAM surrogate on CAM4 test data, and (d) SPCAM
surrogate on SPCAM test data.

FIG3:Model Disagreement between a CAM4 and SPCAM trained model on two datasets.

FIG4:The skill of each model as a function dataset size it was trained (or fine-tuned on) for
precipitation, temperature tendency and moisture tendency.

Conclusions
• Both CAM4-trained and SPCAM-trained surrogates perform exceptionally when evaluated on the same parent data source, but the SPCAM-trained

model generalizes better than the CAM4-trained surrogate. The model disagreement is much greater when evaluated on SPCAM data.

• We show strong gains in the ability to emulate SPCAM when fine-tuning a CAM4-trained surrogate on varying amounts of SPCAM data. Future
work involves running the fine-tuned SPCAM emulator in a hybrid framework using TorchClim (https://doi.org/10.5194/gmd-17-5459-2024).


