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Introduction

o Developing a hybrid climate model with Al surrogates emulating physical parameterizations requires a dataset that captures subgrid dynamics.

o Most physics-emulators require large and accurate training data, but existing Cloud-Resolving Simulations (CRMs) do not fully resolve convection,
observations from field campaigns do not measure all the relevant variables and Large-Eddy Simulations (LES) use only a limited domain.

e We propose and test a pretraining and fine-tuning strategy for combining the benefits of the different types of training data available to obtain
better physics emulator using the concept of transfer learning, where a neural network is trained sequentially on two different but closely related
datasets.

Datasets Neural Network Setup

Four years of coarse-resolution climate data using the Community Atmosphere Model (CAM4) o 7 fully connected (F'C) layer blocks.

within CESM as the GCM.
e Hidden dimension of each layer, H = 512.

Three years of finer resolution data using the superparameterized CAM (SPCAM) with 16

columns of SAM replacing CAM4’s conventional parameterization. o Weighted mse (optimization loss).
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We measure model disagreement on a specific
dataset. Given samples from a (x,y), and two

models ( one trained on a dataset a, f® and

another trained on another dataset b, f° ), we
compute disagreement skill by simply evaluating
both models on the same inputs and normalizing
by the variance of the matching output.
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FIG1:A summary of experiments conducted with the surrogate.

Results
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precipitation variable. Performance of (a) CAM4 surrogate on CAM4 test data, (b) CAM4 samples samples samples

surrogate on SPCAM data, (¢) SPCAM surrogate on CAMA4 test data, and (d) SPCAM FIG4:The skill of each model as a function dataset size it was trained (or fine-tuned on) for

surrogate on SPCAM test data. precipitation, temperature tendency and moisture tendency.

Conclusions

e Both CAM4-trained and SPCAM-trained surrogates perform exceptionally when evaluated on the same parent data source, but the SPCAM-trained
model generalizes better than the CAM4-trained surrogate. The model disagreement is much greater when evaluated on SPCAM data.

e We show strong gains in the ability to emulate SPCAM when fine-tuning a CAM4-trained surrogate on varying amounts of SPCAM data. Future
work involves running the fine-tuned SPCAM emulator in a hybrid framework using TorchClim (https://doi.org/10.5194/gmd-17-5459-2024).



